The second Hankel determinant for strongly convex and Ozaki close-to-convex functions

نویسندگان

چکیده

Abstract Let f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | < 1 } , and $${{\mathcal {S}}}$$ S subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( ) + ∑ n 2 ∞ a for $$z\in {D}}$$ . We give sharp bounds modulus second Hankel determinant $$ H_2(2)(f)=a_2a_4-a_3^2$$ H 4 - 3 {\mathcal F_{O}}(\lambda ,\beta )$$ F O λ , β strongly Ozaki close-to-convex functions, where $$1/2\le \lambda \le 1$$ / ≤ $$0<\beta 0 Sharp are also $$|H_2(2)(f^{-1})|$$ $$f^{-1}$$ is inverse function The results settle an invariance property $$|H_2(2)(f)|$$ convex functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Komatu Integral Operator and Strongly Close-to-convex Functions

In this paper we introduce some new subclasses of strongly closeto-convex functions de…ned by using the Komatu integral operator and study their inclusion relationships with the integral preserving properties. Theorem[section] [theorem]Lemma [theorem]Proposition [theorem]Corollary Remark

متن کامل

Second Hankel determinant for bi-starlike and bi-convex functions of order β

In this paper we obtain upper bounds for the second Hankel determinant H2(2) of the classes bi-starlike and bi-convex functions of order β, which we denote by S∗ σ(β) and Kσ(β), respectively. In particular, the estimates for the second Hankel determinat H2(2) of bi-starlike and bi-convex functions which are important subclasses of bi-univalent functions are pointed out.

متن کامل

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2021

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-021-01089-3